Review of Algorithms and Programming I Exam

Text: How to think like a computer scientist (learning with Python)

Reading Assignment 2: Chapter 2 (Variables, expressions and statements).

1. What's the meaning of type (2.3)?
2. What does print do?
3. What's the difference between $12+13$ and "12" + "13"?
4. Consider the following Python fragment:

$$
\begin{aligned}
& n=3 \\
& m=5 \\
& n=n+m \\
& m=n-m \\
& n=n-m
\end{aligned}
$$

What values do we have in the two variables at the end?
What kind of statements are the five statements above?
Reading Assignment 3: Chapter 3 (Functions)

1. Write Python expressions that verify the following identities:
a) $\quad 10^{\log x}=x$ for $x>0$, and
b) $\sqrt{3^{2}+4^{2}}=5$ (Calculate both sides and print them, then look at them to compare).
2. What is a function in Python?
3. Can you define your own functions in Python?
4. What do we mean by list of parameters in the context of this chapter?
5. Consider the following Python program:
```
def fun(x, y):
    return x * y # [2]
a = fun(2, 3) # [1]
b = fun("2", 3)
print a, b
```

a) What does it evaluate to?
b) Replace the last statement print a, b with print $\mathrm{a}+\mathrm{b}$ and explain the traceback. What's wrong?
c) Now eliminate the line marked [1] and change line [2] to read return $\mathrm{x}+\mathrm{y}$. Run the program and explain the traceback.
6. Consider the following definition:

$$
\begin{aligned}
& \text { def } \begin{array}{l}
\text { fun }(n, m): \\
\\
\text { return } m-n
\end{array}, ~
\end{aligned}
$$

Evaluate the following expressions:
a) $\quad \operatorname{fun}(f u n(1,2), 3)$
b) $\quad \operatorname{fun}(f u n(1,2), \operatorname{fun}(3, f u n(f u n(4, f u n(5,6)), 7)))$
c) $\quad \operatorname{fun}(f u n(1,2), \operatorname{fun}(3, f u n(f u n(4, f u n(5,6)), f u n(7,8))))$
d) What happens if in the definition of fun above we replace return by print?
7. Considering the following definitions:

```
def alpha(x, y):
    return x + beta(y, x)
def beta(x, y):
    return y - x # [1]
```

a) What does alpha $(2,3)$ evaluate to?
b) How does the answer change if the line marked [1] is changed to return $x-y$?
8. Consider the following definition:

```
def fun(x):
    a = x + 1
    print a
    fun(a)
```

can you anticipate the result of calling fun (-10) ?
Reading Assignment 4: Chapter 4 (Conditionals and recursion).

1. What's the result of calling what (10)?
```
def what(n):
    if n == 0:
            result = 0
    else:
        print n # [1]
        result = n + what(n-1) # [2]
    return result
```

a) What's the result of calling what (10) ?
b) Now swap the statements marked [1] and [2]: what's the result of calling (10) now?
def what(n):
if $\mathrm{n}==0$:
result $=0$
else:
result $=\mathrm{n}+$ what ($\mathrm{n}-1$) \# [2]
print n \# [1]
return result
2. Consider the following two fragments:

$$
\begin{aligned}
& \text { if } x=5: \\
& x=x+1 \\
& \text { else }: \\
& x=8
\end{aligned}
$$

```
if x == 5:
    x = x + 1
if x != 5:
    x = 8
```

Are the two fragments logically equivalent? Why or why not?

